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Chapter 2: Signal Analysis 

Chapter 2 Objectives 

 

 
 
 
 
 
 

 
 
 
 
 
Many different kinds of signals are produced and used by electronic systems. A signal is an electrical 

current or voltage that either represents information (the information signal) or performs some useful 
function (the carrier signal in radio). Most signals are alternating-current sine waves, or as we shall see, 
combinations of sine waves.  Signals can be viewed in either the time or frequency domains. 

It's important for technicians to be able to accurately measure electrical signals. We can't see 
electrons flowing in circuits. Test equipment is our eyes. We will make almost all of our decisions based on 
what we read from test equipment -- so we must read it accurately! 

Many systems have signals that are not wanted. The name for any unwanted signal is noise. Noise is 
produced both inside and outside of circuits. Radio receivers are especially sensitive to noise, as they must 
amplify extremely tiny signals from receiving antennas. 

 
 

2-1 Two Domains 

There are two domains in which we can view electronic signals. They are the time domain and the 
frequency domain. All signals have a time and frequency domain representation. To see a signal in the time 
domain, we use an oscilloscope; to see it in the frequency domain, we use a different instrument called a 
spectrum analyzer. The pictures we get from each domain are quite different, but both are very important for 
understanding how communication circuits work.  

Most technicians are very familiar with the instrument of Figure 2-1. This is, of course, an 
oscilloscope. An oscilloscope has a trace that sweeps across the screen from left to right at a selected and 
calibrated rate. As the voltage of a waveform varies from positive to negative and back over time, a 
waveform results. 

 
A scope works a lot like the popular "Etch-A-Sketch" toy. The timebase of a scope moves the dot 

(horizontal knob on the toy) across the face of the screen at a constant speed. The vertical deflection section 
of the scope moves the dot up and down (same as the vertical knob). Because a scope does this over and over 
at a rapid rate, our eyes fuse the images together into one continuous line. 

 

 
Figure 2-1: A Typical Oscilloscope 

Time and Frequency 
Domains 

Oscilloscopes display 
signals in the Time 

Domain. 

¶ Explain the difference between the frequency and time domains. 
¶ Draw a diagram of a sine wave in both the frequency and time domains. 
¶ Explain how a complex waveform (such as a square wave) looks in the frequency domain. 
¶ Define the terms fundamental and harmonic. 
¶ Define noise, and list at least two internal and two external noise sources. 
¶ Calculate the signal-to-noise ratio if the signal and noise voltages (or powers) are known. 
¶ Explain how the noise figure is calculated for an amplifier. 
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We could say that a scope draws a waveform as it happens. In other words, an oscilloscope shows 
pictures of waveforms in the time domain. The horizontal axis on an oscilloscope is in units of time, in 
seconds. 

 

 
Figure 2-2: Reading the Oscilloscope 

Example 2-1 

What is the frequency, peak voltage, peak-to-peak voltage, and RMS (root mean square or effective) voltage of 
the waveform pictured in Figure 2-2, if the scope settings are as follows: 
 
Horizontal, 100 ms per division. 
Vertical, 5 V per division. 
 
If this voltage is being measured across a 50 W resistor, what power will result? 
 
Solution: 
The frequency can be calculated if the period (T) is known: 

 kHzHz
msT

f 11000
1
11

====  

 
The peak voltage can be calculated by observing that the trace goes two grid squares above (or below) the 
baseline at the peak of each cycle: 
 

VpkdivisionVdivisionsVpk 10)/5)(2( ==  

 
The peak-to-peak voltage is the total height of the waveform: 
 

VppdivisionVdivisionsVpp 20)/5)(4( ==  

 
The RMS or effective value of the waveform can be calculated since the shape is a sine wave: 
 

VVVpVpkVrms 07.7)10)(707.0(707.0
2

ººº=  

 
Note that many people even use 0.7 (rather than 0.707) as an "approximate" factor for calculating an RMS 
voltage. When reading from an oscilloscope, this is quite valid, since there may be as much as 5% 
measurement error just from "eyeballing" the display! 
 
Caution: The formula above for RMS voltage is only valid for a sine wave! 
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The power can be calculated using Ohm's law: 
 

WV
R
VP 1

50
07.7 22

=
W

==  

 
Caution: To calculate power, an RMS voltage must be used! 
 

A Shortcut for Calculating Power 
 
If you know the peak-to-peak reading of a sine wave waveform, you can also calculate power by using: 
 

wattVpp
R

VppP 1
)50)(8(

20
8

22

=
W

==  

 
Some people like this formula better, since it avoids the need to convert to RMS first. However it can only be 
used for sine waves! 
 

 
There's another way of looking at electrical signals. An oscilloscope shows signals in the time domain, 

which is fine for many types of measurements. However, many times we're much more interested in what 
frequency or frequencies a waveform might contain. An instrument that shows the frequency domain content 
of a signal is called a spectrum analyzer. 

Being able to measure the frequency content of signals is very useful to us for several reasons. You'll 
recall that one of a radio receiver's tasks is to separate the one desired carrier signal from all the others on 
the air. This is only possible because each radio transmitter uses a different frequency. The frequency content 
of a signal therefore determines whether or not it will be reproduced in a receiver! 

Second, there is only a finite amount of space on the bands in which to operate radio transmitters. 
Transmitters use up this space in the same way that the parking lot at the local mall fills up with cars. Two 
radio stations can't share the same frequency, or they'll interfere with each other. By looking at a radio 
transmitter's signals in the frequency domain, we can determine its bandwidth. Bandwidth is the amount of 
"frequency space" taken up by a signal. It's very much like the width of a motorcycle, car, or truck to be 
parked in a stall. 

Last, we can often tell much more about the quality of a signal by looking at it in the frequency 
domain. Defects or distortions of a waveform are often hard to spot on a scope, especially if the waveform is a 
sine wave. As you'll see, any distortion in a sine wave will cause new frequencies called harmonics to appear.  
Distortion of a sine wave (such as an RF carrier) is often much easier to spot on a spectrum analyzer than a 
scope. 

 
The Frequency Domain is Nothing New! 
 
Long before the dawn of electronics, humans employed the concept of the frequency domain as shown 

in Figure 2-3. 
 

 
Figure 2-3: Old Time Frequency Domain Notation 

Music notation refers to both pitch and duration for each note to be played. Pitch is really the 
listener's mental perception of the frequency of the note being played. Raise the frequency, and the listener 
hears a higher pitch. The vertical position of each note gives a precise indication of its pitch. Pitch is related 
to frequency. Therefore, we're looking at a frequency-domain picture here!  (There is also time-domain 
information, because each different type of note plays for a unique time interval.) 

 
 

The Frequency 
Domain 



 

Test Output - 05-23-2023 
18 

A spectrogram is a graph showing the frequency-domain information of a signal. If the 1 kHz signal of 
Example 2-1 is a perfect sine wave, it will look like Figure 2-4 on a spectrogram. 

 

     

  
7.07  V 

 f 
1  k H z  

 
 

 
Figure 2-4: The Spectrogram of an Ideal Sine Wave 

This picture is troubling; it doesn't look anything like a sine wave! It's just like the music above; the 
look or sound anything like the music when it's being played, yet it still represents 

it. Figure 2-5 is the sine wave of Figure 2-1 displayed on a spectrum analyzer display. 
 

0.0 2.8 5.5
Frequency, KHz (Linear Mode)

 
 

Figure 2-5: Spectrum Analyzer Display of the Pure Sine Wave 
           (Vertical setting, 1 V/division; Horizontal, 550 Hz/Division) 

 
The sine wave is sometimes referred to as the only "pure" waveform, because a sine wave has only one 

frequency when it is viewed in the frequency domain. 
 

Example 2-2 

What type of waveform is being displayed below in Figure 2-6? Determine its frequency, RMS voltage, and 
peak voltage. 
 
Solution: 
The waveform displayed is another sine wave.  A pure sine wave always shows up as one "line" on a 
spectrum analyzer display. By reading its position on the horizontal axis, we can see that the frequency is 
2.8 kHz. The line is 4 units high, so its voltage is: 
 

VdivisionVdivisionsV 4)/1)(4( ==
 

 

Viewing Frequency 
Domain Information 

The voltage is always shown as 
an RMS value. 

The position of the signal on 
the horizontal axis gives its 
frequency. 

The height of the signal line gives the 
relative amplitude; voltage or power. 
 

The amplitude is 7 divisions times 1 volt 
per division, or 7 volts RMS. 
 
The units of voltage are almost always 
RMS on a spectrogram.  

The frequency is close to  1 
kHz, according to the 
horizontal scale. 
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This is an RMS voltage. Therefore: 
 

VpkVrmsVrmsVpk 66.5
707.0

2 ºº=  

 
Note that dividing by 0.707 is the same thing as multiplying by 1.41, which is approximately the square root 
of 2. 
 

0.0 2.8 5.5
Frequency, KHz (Linear Mode)  

Figure 2-6: A Spectrogram Display 
       (Vertical setting, 1 V/division; Horizontal, 550 Hz/Division) 

 
 

Section Checkpoint 

2-1 What is a signal? 
2-2 What are the two domains for viewing signals? 
2-3 What instrument displays signals in the time domain? What are the units of its horizontal axis? 
2-4 What is a spectrogram? 
2-5 Give three reasons why technicians need to understand the frequency domain. 
2-6 What instrument shows frequency domain information? What are the units on its horizontal axis? 
2-7 What does a pure sine wave look like on a spectrogram? 
2-8 Why is a sine wave referred to as "the only pure waveform?" 
2-9 If the frequency of a sine wave is increased, what happens to its spectrogram picture? 
2-10 If the amplitude (or voltage) of a sine wave is increased, how will its spectrogram change? 
 

 
2-2 Complex Waveforms 

Not all waveforms in electrical circuits are pure sine waves. A complex waveform is any signal that is 
not a sine wave. Don't be intimidated by the phrase "complex waveform." They're really not complicated at 
all! In this application, the word complex could be interpreted as "made from many parts."  It's very likely 
that you've measured one or more of the following signals in the electronics lab: 

 
¶ A square, triangle, or sawtooth wave 

 
These are all complex and periodic (repeating) signals. We say they're complex because they contain 

more than a single pure sine wave. In communications, you're also likely to measure some of these as well: 
 

¶ Human voice 
¶ Music 
¶ Digital data 

 
Yes -- these signals are also complex waveforms. In fact, they're quite complicated, especially the first 

two. Speech and music signals are very hard to predict because they are not periodic (repeating). 
Fortunately, there's no need for an in-depth analysis of these signals to understand how they'll be carried by 
a communication system. We'll examine a few samples of these signals near the end of this section. 
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A 19th century mathematician, Jean Baptiste Fourier (pronounced four-ee'-ay), was very interested 

in describing the movement of heat by using mathematics. The equations Fourier developed were periodic or 
repeating, but were not shaped like sine waves. 

Fourier hypothesized that any periodic mathematical function (we can say electrical signal) could be 
represented by the addition of an infinite series (sum of an infinite number of terms) of sine and cosine (sine 
with 90-degree angle) waves, plus a DC level or average.  This idea is very important in communications.  

Any periodic signal that is not a pure sine wave can be considered to be built out of the following 
components: 

  
¶ A DC component or "average" (which can be zero.) 
¶ A fundamental sine wave that has a frequency exactly the same as the frequency of the signal. 
¶ An infinite number of harmonics. A harmonic is a frequency that is an exact multiple of the fundamental 

frequency. 
 
This is pretty heavy theory, so let's put it to work. We've seen what a sine wave looks like in both the 

time and frequency domains. By doing a "Fourier Analysis" of any waveform, we get its frequency domain 
picture. Figure 2-7 shows a 1 kHz, 1 V peak square wave. 

 
 

1  V  

 t 
1  V  

1  m s  

 
Figure 2-7: Time Domain (Oscilloscope) Picture of a 1 kHz Square Wave 

 
If we were to do a Fourier analysis of this signal, we would get the frequency domain version. It would 

look something like Figure 2-8. 
 

   0 .9  V  
(1 .27 V  pk )  

 f (k H z) 
1  2  3  4  5  6  . . .  0  

(DC)  

  0 .3  V  
(424 mV pk )    180 mV 

(255 mV pk )  

7 

  129 mV 
(182 mV pk )  

Fundamental or 
1st Harmonic 

3rd Harmonic 5th Harmonic 7th Harmonic 

 

Figure 2-8: Frequency Domain Picture of a Square Wave 

 

Fourier Analysis 
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Again, this picture doesn't look anything like a square wave--but that's what it represents! By looking 
at this picture, we can tell that the 1 kHz square wave is really made of the following frequency components: 

 
¶ A 1 kHz, 0.9 V (RMS) sine wave. (The fundamental or first harmonic) 
¶ A 3 kHz, 0.3 V sine wave. (The third harmonic) 
¶ A 5 kHz, 0.18 V sine wave (The fifth harmonic) 
¶ A 7 kHz, 0.129 V sine wave (The seventh harmonic) 

 
If you're curious about how the values of Figure 2-8 are actually calculated, Section 2-6 shows how 

that is accomplished. 
This sequence continues to infinity. In a perfect square wave, there are an infinite number of 

frequencies present.  Fortunately, the square waves in practical circuits aren't perfect, so we don't need to 
analyze an infinite number of frequencies to understand them. In fact, we only need to analyze up to the 13th 
harmonic in order to get a decent reproduction of a square wave. 

Notice that the voltages of the sine wave frequencies gradually get smaller as frequency is increased. 
Eventually, they approach zero. This is why most techs use the rule about the 13th harmonic when dealing 
with square waves. Don't be concerned with how we obtained the voltages; just keep in mind that they will 
tend to get smaller as frequency increases.  

 
Something is Missing! 
 
You'll notice several things missing from Figure 2-8, namely the harmonics at 2 kHz, 4 kHz, 6 kHz 

(and so on) and the DC Level. Where are they? 
The even harmonics are not present because the square wave is perfectly symmetrical. The bottom 

and top look just like each other; they're just mirror images. Any waveform with this type of symmetry will 
have only odd-numbered harmonics. We say that the even harmonics have been cancelled out. 

The DC level is absent because the average of the signal voltages in Figure 2-7 is zero. The signal 
spends exactly the same amount of time being positive as it spends being negative, so on average, the DC 
voltage will be zero. If this were not true, the signal would look like Figure 2-9 below: 

 
 

1.5 V 

 t 
0.5 V 

1 m s 

0.5 V  D C  Leve l 

 

Figure 2-9: A Square Wave Riding on a DC Level 

 
 
The signal of Figure 2-9 is still a 2 V peak-to-peak square wave (1 V peak), however, it been pushed 

up or "clamped" to a level of 0.5 V DC. The frequency-domain version of Figure 2-9 is shown in Figure 2-10. 
 
 

Missing Harmonics in 
Signals and 

Waveform Symmetry 
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DC  Level 

  0 .5  V  

Fundamental 3rd Harmonic 5th Harmonic 7th Harmonic 
 

Figure 2-10: Frequency Domain Picture of the Square Wave Riding on a DC Level 

 
As you can see, the only difference between Figure 2-8 and Figure 2-10 is the addition of the 0.5 Volt 

DC level. Adding or subtracting a DC level from a complex waveform doesn't affect the sine wave frequency 
amplitudes. 

 
Figures 2-11 and 2-12 show an oscilloscope and spectrum analyzer view of the same 1 kHz square 

wave that we just analyzed. How do the pictures compare to the theory? 
 

 
Figure 2-11: Oscillograph of 1 kHz Square Wave 

         (Vertical, 500 mV/Div; Horizontal, 200 mS/Div) 

 
The oscilloscope picture is exactly as we expected. There's no apparent DC level, and the period is 5 

divisions, which works out to be 1000 ms or 1 ms. The frequency of this waveform is therefore: 
 

kHz
msT

f 1
1
11
===  

Square Wave Signal 
Measurements 
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0.0 11.0 22.1
Frequency, KHz (Linear Mode)  

 
Figure 2-12: Spectrogram of a Square Wave 

    (Vertical Setting, 100 mV/Division) 

 
The spectrum analyzer view also agrees with the theory. The fundamental frequency is 1 kHz and 

measures 900 mV. The third harmonic measures only 300 mV, the fifth (5 kHz) measures 200 mV, and so on. 
Notice how the signals start getting small around 11 kHz. This is why most technicians stop analysis at the 
13th harmonic. The 17th harmonic is very small, and barely visible as a bump on the graph. 

 
There's another way of understanding the square wave of Figures 2-7 and 2-11. A square wave is 

nothing more than the sum of an infinite number of sine waves, each with a frequency that is an odd 
multiple of the fundamental frequency. If we were to graph these sine waves and add them together point by 
point, we would get the square wave. Figure 2-13 shows how this works. 

 
One way of thinking about the Fourier analysis of a waveform is to consider it a recipe for building 

that particular signal in the frequency domain.  To obtain the resultant wave of Figure 2-13, all the points in 
the fundamental, third harmonic, and fifth harmonic are added together. 

 
 
 
 
 

Separating Square 
Wave Signal 
Components 

1 kHz 
Fundamental 
(900 mV) 

3 kHz 
3rd Harmonic 
(300 mV) 

11 kHz 
11th Harmonic 

Fundamental Voltage 
900 mV 
 
(100 mV/Div times 9 
divisions) 17 kHz 

17th Harmonic 
(Tiny bump) 
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Figure 2-13: The Recipe for a Square Wave in the Time Domain 


